Paley–wiener Theorems for the Dunkl Transform

نویسنده

  • MARCEL DE JEU
چکیده

We conjecture a geometrical form of the Paley–Wiener theorem for the Dunkl transform and prove three instances thereof, by using a reduction to the one-dimensional even case, shift operators, and a limit transition from Opdam’s results for the graded Hecke algebra, respectively. These Paley– Wiener theorems are used to extend Dunkl’s intertwining operator to arbitrary smooth functions. Furthermore, the connection between Dunkl operators and the Cartan motion group is established. It is shown how the algebra of radial parts of invariant differential operators can be described explicitly in terms of Dunkl operators. This description implies that the generalized Bessel functions coincide with the spherical functions. In this context of the Cartan motion group, the restriction of Dunkl’s intertwining operator to the invariants can be interpreted in terms of the Abel transform. We also show that, for certain values of the multiplicities of the restricted roots, the Abel transform is essentially inverted by a differential operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . FA ] 1 1 Ju l 2 00 5 Real Paley - Wiener theorems for the Dunkl transform on IR d

In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on IR d. More precisely, we characterize the functions in the Schwartz space S(IR d) and in L 2 k (IR d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support. 1 Introduction In the last few years there has been a great interest to real Paley-Wiener theorems for certain integral transforms, see [...

متن کامل

Three results in Dunkl theory

In this article, we establish first a geometric Paley–Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the L p → L norm of Dunkl translations in dimension 1. Finally we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.

متن کامل

Three Results in Dunkl

In this article, we establish first a geometric Paley–Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the L p → L norm of Dunkl translations in dimension 1. Finally we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.

متن کامل

ar X iv : 0 90 4 . 36 08 v 1 [ m at h . C A ] 2 3 A pr 2 00 9 THREE RESULTS IN DUNKL ANALYSIS

In this article, we establish first a geometric Paley–Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the L p → L norm of Dunkl translations in dimension 1. Finally we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.

متن کامل

Generalized Paley-Wiener Theorems

Non-harmonic Fourier transform is useful for the analysis of transient signals, where the integral kernel is from the boundary value of Möbius transform. In this note, we study the Paley–Wiener type extension theorems for the non-harmonic Fourier transform. Two extension theorems are established by using real variable techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001